Frameworks para visualización y análisis de volúmenes de datos en Big Data usando modelamiento de ecuaciones estructurales
Contenido principal del artículo
Resumen
En las ciencias computacionales, la visualización de información con frecuencia requiere el uso de métodos sofisticados, de forma que se pueda mostrar información importante, resultado de la relación entre las variables. Es así como mediante proyecciones y regresiones usando modelamiento de ecuaciones estructurales, se pueden tomar decisiones y ver aspectos no visibles en otro tipo de visualizaciones; para la realización de esta forma de obtener conocimiento, se usan frameworks y herramientas que reciben como insumo los valores entregados por las variables, haciendo posible para el usuario final que el análisis de información de forma dinámica e interactiva sea cada vez más fácil.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Citas
Carneiro, N., Teixeira, R., Aráujo, T., Santos, C. & Junior, J. (2015). A Concurrent Architecture Proposal for Information Visualization Pipeline. IEEE 2015 19th International Conference on Information Visualisation A. https://doi.org/10.1109/iV.2015.49
Chen, J. (2013). Research on interactive information visualization system in special academic discussion. 2012 Fourth International Symposium on Information Science and Engineering Research, 59–63. https://doi.org/10.1109/ISISE.2012.22
Craig, P., Huang, X., Chen, H., Wang, X. & Zhang, S. (2015). Pervasive Information Visualization. IEEE 2015 IEEE International Conference on Computer and Information Technology, 2232–2233. https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.330
DATAVISUALIZATION. (2016). Data Visualization Selected Tools. Retrieved June 18, 2018, from http://selection.datavisualization.ch/
Fang, S. (2011). Optimization for Information Visualization Based on Visual Thinking. IEEE 2011 International Conference on Electronic & Mechanical Engineering and Information Technology Optimization, 4243–4247.
Kan, Z., Xuefei, Z. & Jin, X. U. E. (2014). Evaluation of Quality and its Influence Factors of Human Settlement in the Metropolitan Periphery Area Based on Structural Equation Model, (January 2010), 1–5. https://doi.org/10.1109/ICMTMA.2014.70
Lirong, X., Mengjun, W. & Jing, F. (2011). A Visualization System for Web Retrieved Credit Information. IEEE Seventh International Conference on Natural Computation, 728–733.
Liu, C. & Wang, P. (2015). A Sunburst-Based Hierarchical Information Visualization Method and Its Application in Public Opinion Analysis.
Luse, A. (2014). Utilizing Structural Equation Modeling and Social Cognitive Career Theory to Identify Factors in Choice of IT as a Major, 14(3), 1–19.
Ning, Z., Wenxing, H. & Siting, Z. (2012). A Solution for an Application of Information Visualization in Telemedicine. IEEE The 7th International Conference on Computer Science & Education, (Iccse), 407–411.
Oliveira, E. C. De & Cardoso, A. (2014). A Proposal for a Meta-Information Visualization using Treemap. IEEE 2014 International Conference on Computational Science and Computational Intelligence, 247–252. https://doi.org/10.1109/CSCI.2014.49
Pitchforth, J. (2013). An Evaluation of the Circles Information Visualization Tool for Presenting Bayesian Network Output. 2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation, 83–89. https://doi.org/10.1109/CIMSim.2013.22
PREFUSE. (2016). Dependency graph. Retrieved July 7, 2018, from http://flare.prefuse.org/launch/apps/dependency_graph
TABLEAU. (2016). Visual Analysis Best Practices Simple Techniques for Making Every Data Visualization Useful and Beautiful.
Templin, J. (2011). Univariate and Multivariate Statistical Distributions, 1–63.
Wong, P. C. & Bergeron, R. D. (2015). 30 Years of Multidimensional Multivariate Visualization. Durham.
Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N. & Slingsby, A. (2012). Sketchy Rendering for Information Visualization. IEEE 2012 Transactions on Visualization and Computer Graphics, 18(12), 2749–2758.